
James Anderson

SYMBOLIC
Of the future



6 reasons why symbolic 

execution is better than IDA
Number 5 will blow you mind!

James Anderson

SYMBOLIC
Of the future



6 reasons why symbolic 

execution is better than IDA
Number 5 will blow you mind!

James Anderson

SYMBOLIC
Of the future



Get the presentation:

malwr.co/symbolic

(I swear it’s not malware)



Who am I?:
-Malware reverse engineer 5 years

-Security Engineer 2 years



#1
Reverse engineering is great 

but if it takes more than a day it 

takes too long.



Grab the pitchforks lads!



Grab the pitchforks!

Hear me out first…

(besides this is buzzfeed worthy clickbait so now you have to listen)



How every task starts



Let’s do this



How every task starts

Looks pretty straight forward



I’m seeing into the matrix…

https://xkcd.com/664/



The Investigation

Wait a second!

What does this call do?



The Investigation

What is this! 

Even more calls



Plz Help…

Plz halp, I’ve gone too 

deep.



Speed is the key

https://xkcd.com/664/



What was I looking at? Ah nevermind…

Time Matters

If others are waiting on

the results then they will

move on quickly



What was I looking at? Ah nevermind…

Time Matters

If others are waiting on

the results then they will

move on quickly

Tracking Bugs

How long can we do it

for? I want results but

how soon?



What was I looking at? Ah nevermind…

Time Matters

If others are waiting on

the results then they will

move on quickly

Tracking Bugs

How long can we do it

for? I want results but

how soon?

Faster at the game

If others are waiting on

the results then they will

move on quickly



#2
Dynamic is fast and efficient, 

but you always lose out on the 

details.



No one is surprised by this

Dynamic execution like cuckoo gives us 
some of the answers but it only gets us part 
of the way. 



No one is surprised by this

While sandboxes give good detail they lose the details.
• How are the comms encrypted?

• What other persistence methods are there?

• Does it have any anti-vm/ anti debugger techniques

• What did we miss?

Static gives the detail but can be slow
• Many unresolved symbols

• Debugger side by side to help analysis



What if there was another way?



Symbolic Execution

Symbolic execution is testing technique to aid the 
generation of test data and in proving the program quality

Symbolic execution is simply making some data ‘symbolic’ 
in the same way we do for formulas.

2𝑥 + 7 = 23



This is nothing new…



#3
Symbolic execution is the 80% 

solution you need.



Symbolic Execution

Remember we are trying to get answers fast
• We aren’t trying to work out everything

• Just the core details

• URL’s, comms , persistence, lateral movement, second stage

If we can get the detail sooner even if we don’t fully 
understand it we still get what we (and others) need.



Symbolic Execution

Concrete 

Execution

Standard execution of a

program with defined

variables (i.e. x=5)



Symbolic Execution

Concrete 

Execution

Standard execution of a

program with defined

variables (i.e. x=5)

Symbolic 

Execution

Execute a program through all 

possible execution paths, thus 

achieving all possible path 

conditions



Symbolic Execution

Concrete 

Execution

Standard execution of a

program with defined

variables (i.e. x=5)

Symbolic 

Execution

Execute a program through all 

possible execution paths, thus 

achieving all possible path 

conditions

Concolic

Execution
Concolic execution is a mix 

between CONCrete execution 

and symbOLIC execution, 

guiding it through a specific 

execution path



Concrete Execution

Concrete execution

• Perform actions based on the hard data that is 
passed in.

• X and y are hard values (i.e x =5, y=7)

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}



Symbolic Execution - Primer

Symbolic Execution

Maintains a symbolic states of registers and part of memory 
at each program point.

• a table of symbolic registers states

• a map of symbolic memory states

• a global set of all symbolic references



Dynamic forward symbolic execution 

Dynamic forward symbolic execution builds a logical formula 
describing a program execution path



Dynamic forward symbolic execution 

Dynamic forward symbolic execution builds a logical formula 
describing a program execution path

1  int f() {
2 
3   y = read();
4   z = y * 2;
5   if (z == 12) {
6     fail();
7   } else {
8     printf("OK");
9   }
10 }

Symbolic execution proceeds 

along both branches, by "forking" 

two paths. Each path gets assigned 

a copy of the program state at the 

branch instruction as well as a path 

constraint 

λ * 2 == 12 for the then branch and λ * 2 != 12



Taint Analysis

The purpose of dynamic taint analysis is to track the information flow 
from the sources (usually user inputs) to the targets (such as control-
flow value). 

It is thus capable of analyzing which region of the memory and 
registers are controllable by user inputs.



Taint Analysis

With this method it is possible to check the registers and 
the memory areas which can be controlled by the user 
when a crash occurs

https://www.slideshare.net/jimclause/penumbra-automatically-identifying-failurerelevant-inputs-issta-2007

https://www.slideshare.net/jimclause/penumbra-automatically-identifying-failurerelevant-inputs-issta-2007


Taint Analysis

With this method it is possible to check the registers and 
the memory areas which can be controlled by the user 
when a crash occurs

https://www.slideshare.net/jimclause/penumbra-automatically-identifying-failurerelevant-inputs-issta-2007

https://www.slideshare.net/jimclause/penumbra-automatically-identifying-failurerelevant-inputs-issta-2007


Taint Analysis

With this method it is possible to check the registers and 
the memory areas which can be controlled by the user 
when a crash occurs

https://www.slideshare.net/jimclause/penumbra-automatically-identifying-failurerelevant-inputs-issta-2007

https://www.slideshare.net/jimclause/penumbra-automatically-identifying-failurerelevant-inputs-issta-2007


Symbolic Execution – Taint Analysis

w = 5
x = input()
y = 13
j = x + 2
z = w + y

z = j + 2
w = z - y

print(“Fail”) print(“Winner”)

z > 20 y = y+ 1

w < 10



Symbolic Execution – Taint Analysis

w = 5
x = input()
y = 13
j = x + 2
z = w + y

z = j + 2
w = z - y

print(“Fail”) print(“Winner”)

z > 20 y = y+ 1

w < 10

Make x symbolic

Everything that x influences is tainted



Symbolic Execution – Taint Analysis

w = 5
x = input()
y = 13
j = x + 2
z = w + y

z = j + 2
w = z - y

print(“Fail”) print(“Winner”)

z > 20 y = y+ 1

w < 10

Make x symbolic

Everything that x influences is tainted



Symbolic Execution – Taint Analysis

w = 5
x = input()
y = 13
j = x + 2
z = w + y

z = j + 2
w = z - y

print(“Fail”) print(“Winner”)

z > 20 y = y+ 1

w < 10

Make x symbolic

Everything that x influences is tainted



Symbolic Execution – Taint Analysis

w = 5
x = input()
y = 13
j = x + 2
z = w + y

z = j + 2
w = z - y

print(“Fail”) print(“Winner”)

z > 20 y = y+ 1

w < 10

Make x symbolic

Everything that x influences is tainted

Here we can see that x alters control 

flow



Symbolic Execution Limitations

Path Explosion

• Symbolically executing all feasible program paths does not scale to large 
programs. 



Symbolic Execution Limitations

Path Explosion

• Symbolically executing all feasible program paths does not scale to large 
programs. 

• The number of feasible paths in a program grows exponentially with an increase 
in program size.



Symbolic Execution Limitations

Path Explosion

• Symbolically executing all feasible program paths does not scale to large 
programs. 

• The number of feasible paths in a program grows exponentially with an increase 
in program size.

Environment Interactions

• Symbolic execution that requires a file or user input will have consistency 
problems. 



Symbolic Execution Limitations

Path Explosion

• Symbolically executing all feasible program paths does not scale to large 
programs. 

• The number of feasible paths in a program grows exponentially with an increase 
in program size.

Environment Interactions

• Symbolic execution that requires a file or user input will have consistency 
problems. 

• File operations are implemented as system calls in the kernel, and are outside 
the control of the symbolic execution



Concolic Execution

Concolic execution

• Performs symbolic execution along a concrete 
execution path

• Simplifying symbolic execution in the example 

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}

if

1
2
3
4
5
6
7
8



Concolic Execution

Concolic execution

• Let x =1 y = 1

• Z=2

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}

if

1
2
3
4
5
6
7
8



Concolic Execution

Concolic execution

• Let x = y = 1

• Z=2

• Line 3 fails because since 1 ≠ 100000

• From the inequality  we create a path condition

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}

if

x=0
Y=0

𝑥 ≠ 100000

1
2
3
4
5
6
7
8



Concolic Execution

Concolic execution

• Try a different path, let x = 10000

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}

if

if
x=0
Y=0

𝑥 = 100000𝑥 ≠ 100000

1
2
3
4
5
6
7
8



Concolic Execution

Concolic execution

• Try a different path, let x = 10000

• Automated theorem prover is then invoked to 
find values for the input variables x and y

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}

if

if
x=0
Y=0

𝑥 = 100000𝑥 ≠ 100000

1
2
3
4
5
6
7
8



Concolic Execution

Concolic execution

• Try a different path, let x = 10000

• Automated theorem prover is then invoked to 
find values for the input variables x and y

• A valid theorem might be x = 100000, y = 0

void f(int x, int y) {
int z = 2*y;
if (x == 100000) {

if (x < z) {
assert(0); /* error */

}
}

}

if

if
x=0
Y=0

x=100000
y=0

X=100000
Y=50001

𝑥 = 100000𝑥 ≠ 100000

𝑥 < 𝑧𝑥 ≥ 𝑧

1
2
3
4
5
6
7
8



Concolic Covering Middle Ground



Symbolic execution engines

Triton

Triton is a dynamic binary analysis (DBA) framework. It 
provides internal components like a Dynamic Symbolic 
Execution (DSE) engine, a Taint Engine, AST 
representations of the x86 and the x86-64 instructions 
set semantics

https://triton.quarkslab.com/

https://triton.quarkslab.com/


Symbolic execution engines

Angr

Python framework for analyzing binaries. It combines both 

static and dynamic symbolic ("concolic") analysis, making it 

applicable to a variety of tasks.

http://angr.io/

http://angr.io/


If this is how you feel your in luck!



#4
Sometimes all you need is a 

little more ponce in your life.



Ponce

IDA’s 2016 plugin contest winner

Built on the triton engine

https://github.com/illera88/Ponce

https://github.com/illera88/Ponce


Ponce

IDA’s 2016 plugin contest winner

Built on the triton engine

Supports both x86 and x64 binaries

Cross platform, Windows, Linux 

and OSX natively

https://github.com/illera88/Ponce
x64

https://github.com/illera88/Ponce


Ponce

Just a quick insight into ponce.

C2
C2 Channel

Symbolize the data returned from malware. Find where the data hits the C2 switch and 

use the SMT solver to determine the control byte



Ponce

Just a quick insight into ponce.

C2
C2 Channel

Symbolize the data returned from malware. Find where the data hits the C2 switch and 

use the SMT solver to determine the control byte

Finding exploits.

Run taint analysis on the data returned from a Recv() or a InternetReadfile() to see what 

blocks of data it touches. Platform to build  exploits



Ponce

Just a quick insight into ponce.

C2
C2 Channel

Symbolize the data returned from malware. Find where the data hits the C2 switch and 

use the SMT solver to determine the control byte

Finding exploits.

Run taint analysis on the data returned from a Recv() or a InternetReadfile() to see what 

blocks of data it touches. Platform to build  exploits

Rapid analysis

Run and negate conditions on known buffers to find what other commands are 

supported.



Ponce

Simple to install (IDA 6.8-6.9):

$ cp Ponce_x64_IDA68_win.p64 <IDA_PRO>/plugins 

$ cp Ponce_x64_IDA68_win.plw <IDA_PRO>/plugins 

Download the plugins and copy to your IDAPro plugins folder



Ponce Example - Crackme



Ponce Example - Crackme



Ponce Example - Crackme

+

Normally load your two favorite tools



Ponce Example - Crackme

OR

Maybe use Ponce?



Ponce Example

Standard crackme.exe

#include <stdio.h>
#include <stdlib.h>

char *serial = "\x31\x3e\x3d\x26\x31";

int check(char *ptr)
{

int i;
int hash = 0xABCD;

for (i = 0; ptr[i]; i++)
hash += ptr[i] ^ serial[i % 5];
return hash;

}

int main(int ac, char **av)
{

int ret;
if (ac != 2)

return -1;

ret = check(av[1]);
if (ret == 0xad6d)

printf("Win\n");
else

printf("fail\n");
return 0;

}



#include <stdio.h>
#include <stdlib.h>

char *serial = "\x31\x3e\x3d\x26\x31";

int check(char *ptr)
{

int i;
int hash = 0xABCD;

for (i = 0; ptr[i]; i++)
hash += ptr[i] ^ serial[i % 5];
return hash;

}

int main(int ac, char **av)
{

int ret;
if (ac != 2)

return -1;

ret = check(av[1]);
if (ret == 0xad6d)

printf("Win\n");
else

printf("fail\n");
return 0;

}

Ponce Example

Standard crackme.exe

Hardcoded serial to check against



#include <stdio.h>
#include <stdlib.h>

char *serial = "\x31\x3e\x3d\x26\x31";

int check(char *ptr)
{

int i;
int hash = 0xABCD;

for (i = 0; ptr[i]; i++)
hash += ptr[i] ^ serial[i % 5];
return hash;

}

int main(int ac, char **av)
{

int ret;
if (ac != 2)

return -1;

ret = check(av[1]);
if (ret == 0xad6d)

printf("Win\n");
else

printf("fail\n");
return 0;

}

Ponce Example

Standard crackme.exe

Hardcoded serial to check against

Takes the input and XOR’s it against the serial.



#include <stdio.h>
#include <stdlib.h>

char *serial = "\x31\x3e\x3d\x26\x31";

int check(char *ptr)
{

int i;
int hash = 0xABCD;

for (i = 0; ptr[i]; i++)
hash += ptr[i] ^ serial[i % 5];
return hash;

}

int main(int ac, char **av)
{

int ret;
if (ac != 2)

return -1;

ret = check(av[1]);
if (ret == 0xad6d)

printf("Win\n");
else

printf("fail\n");
return 0;

}

Ponce Example

Standard crackme.exe

Hardcoded serial to check against

Takes the input and XOR’s it against the serial.

If 0xABCD + (serial  XOR input) == 0xAD6D   Win!



#include <stdio.h>
#include <stdlib.h>

char *serial = "\x31\x3e\x3d\x26\x31";

int check(char *ptr)
{

int i;
int hash = 0xABCD;

for (i = 0; ptr[i]; i++)
hash += ptr[i] ^ serial[i % 5];
return hash;

}

int main(int ac, char **av)
{

int ret;
if (ac != 2)

return -1;

ret = check(av[1]);
if (ret == 0xad6d)

printf("Win\n");
else

printf("fail\n");
return 0;

}

Ponce Example

Standard crackme.exe

Hardcoded serial to check against

Takes the input and XOR’s it against the serial.

If 0xABCD + (serial  XOR input) == 0xAD6D   Win!

Even with the source what is the key?



Ponce Example

Load the crackme.exe file



Ponce Example

Load the crackme.exe file



Ponce Example

Win condition

Fail condition



Ponce Example

Win condition

Fail condition

Call for check_function

return value into eax

jnz short loc_4010A2



Ponce Example

Win condition

Fail condition

Call for check_function

return value into eax

jnz short loc_4010A2

Set a breakpoint at program entry

Want to symbolize argv[1]



Ponce Example

Start ponce plugin

Set to symbolic engine



Ponce Example

Set an input argument



Ponce Example

Debugger started



Ponce Example

Jump in hex to the where 

argv[1] is passed in



Ponce Example

Symbolize the data that bytes 

that we care about

AAAAA



Ponce Example

Highlighted blocks of code 

that were executed



Ponce Example

Implement SMT solver to 

deduce what bytes we 

needed to obtain the end 

point



Ponce Example

We have the key!

SX7@Y



Ponce Example

Success! 

We have the key

SX7@Y



Ponce



#5

Manticore is your friend…



Manticore

A Plugin to IDA is great, but what if I 
wanted to do something more automated?



Manticore

A Plugin to IDA is great, but what if I 
wanted to do something more automated?

Maybe a code oriented approach?



Manticore

A Plugin to IDA is great, but what if I 
wanted to do something more automated?

Maybe a code oriented approach?

Not an auto-solve but a much better 
approach.



Manticore

Open source tool

Command line interface 

Quickly generates use cases 



Manticore

Open source tool

Command line interface 

Quickly generates use cases 

Python API

To answer more in depth questions

• How many times does a program execute this 
function?



Manticore

Open source tool

Command line interface 

Quickly generates use cases 

Python API

To answer more in depth questions

• How many times does a program execute this 
function?

• What input causes execution of this block of 
code?



Manticore

Open source tool

Command line interface 

Quickly generates use cases 

Python API

To answer more in depth questions

• How many times does a program execute this 
function?

• What input causes execution of this block of 
code?

• At point X in execution, is it possible for variable Y 
to be a specified value?



Manticore

Pythonic symbolic programming

Hook addresses and add constraints 



Manticore

Pythonic symbolic programming

Hook addresses and add constraints 

Read/write into registers/memory at 
point of execution



Manticore

Pythonic symbolic programming

Hook addresses and add constraints 

Read/write into registers/memory at 
point of execution

Use SMT solver in Z3 to do 
symbolically solve deep assembly 
structures. 



Manticore

Simple to install (Ubuntu 16.04):

$ pip install manticore

$ apt install z3

Of course working in a virtual 

environment is recommended



Manticore

CTF 2016

• Cory Duplantis

Reverse engineering challenge

Bust out the rush tape!



Manticore – Dive in



Manticore – Dive in



Manticore – Dive in



Manticore – Dive in

Set up a symbolic buffer 0x43 in size



Manticore – Dive in

Set up a symbolic buffer 0x43 in size

In this challenge the string starts 
with: CTF{



Manticore – Dive in

Set up a symbolic buffer 0x43 in size

In this challenge the string starts 
with:

Write data to the buffer

CTF{



Manticore – Dive in

Set up a symbolic buffer 0x43 in size

In this challenge the string starts 
with:

Write data to the buffer

Hook does not patch instruction

Set EIP to after the call

CTF{



Manticore – Dive in

Function to remove failed paths –
auto negate and inject



Manticore – Dive in

Function to remove failed paths –
auto negate and inject

Define end point in execution

• Use z3 to solve against the input 
address we defined



Manticore – Dive in



Manticore – Dive in



#6
Okay, so maybe it won’t solve 

everything but it will help.



Where are we going?

Symbolic of the future?

Traditional tools have served us really well and will still be the go 
to solve all of the in depth questions we have

The future of  reverse engineering?

Increasing pace of malware, new outbreaks and the need to get 
answers fast. We can’t afford the time that attackers provide.



Thanks for your time!

Questions?
(Also it’s lunch time and I’m hungry)

SYMBOLiC
Of THE fUTuRE


